• broken image

    Feng Liu (刘锋), Ph. D.

    Associate Professor 副教授

    Business School, Shandong University, Weihai, China.

    Principal Investigator (PI) of Star-lights Research Team (星耀科研小组)

    Editorial Board: Small Business Economics (SSCI), Journal of Competitiveness (SSCI, 2021-2024), Humanities & Social Sciences Communications (SSCI), Information Resources Management Journal (EI), International Journal of Multinational Corporation Strategy

    Young Editorial Board: Data Science and Management

    Email address: liufeng@sdu.edu.cn


    September 2023 - Now: Associate Professor at the Business School, Shandong University, Weihai.

    March 2020 - August 2023: Assistant Professor at the Business School, Shandong University, Weihai.

    March 2017 - February 2020: PhD in Business (Major in Logistics, Service & Operations Management), Korea University Business School.

  • 与合作者携手并进,与学术圈同频共振,与国家共绘繁荣。

    Collaborate closely with our partners, engage harmoniously with the academic community, and contribute to the prosperity of our motherland.

    broken image

    个人简介

    刘锋博士,山东临沂人,现任山东大学商学院副教授,硕士生导师,入选山东哲学社会科学“111”领军人才培育项目、山东大学(威海)青年学者未来计划,2020年获得高丽大学商学院博士学位。主要从事供应链管理与人工智能的交叉融合方向的研究,熟练掌握机器学习、深度学习、多模态融合等新兴技术,围绕数智化运营与供应链管理取得一系列研究成果,拓宽了供应链集中度、供应链透明度等相关理论,丰富了人工智能在经管学科的研究范式。在Journal of Business Ethics, International Journal of Production Economics, TechnologicalForecasting and Social Change, Annalsof Operations Research, China Economic Review, Expert Systems with Applications, 《科学学研究》等SCI/SSCI/CSSCI来源刊物上发表论文50余篇,其中带领星耀科研小组 (Star-lights Research Team)的本科生在国际高水平期刊发表论文10余篇。主持国家自然科学基金青年项目1项,教育部人文社科青年项目1项,担任Small Business Economics (SSCI), Journal of Competitiveness (SSCI), Humanities & Social Sciences Communications (SSCI)等多个期刊的编委以及Data Science and Management的青年编委。2020年获得了工业和信息部颁发的<大数据分析师高级证书>,具备大数据采集、分析、教学等专项技术水平。

    目前团队经费充足,研究基础扎实,代码积累丰富,技术方法熟练。

    欢迎有志于从事学术研究的,特别对供应链运营管理、数字治理、信息资源管理、大数据分析、机器学习与深度学习感兴趣的同学报考商学院的企业管理学术硕士和工业工程与管理专业硕士。

    Feng Liu is an Associate Professor at Business School, Shandong University, Weihai, China. He is Principal Investigator (PI) of Star-lights Research Team. He got his Ph.D. from the Department of Logistics, Service and Operations Management (LSOM) at Korea University Business School, Seoul, Korea. He serves on the editorial board of Small Business Economics, Humanities & Social Sciences Communications, and Information Resources Management Journal.

  • Team Overview 团队介绍

    科研追光,星耀山大!

    面向本科生的星耀科研小组已经成功运营了6期,指导山东大学的本科生发表SSCI/SCI论文10余篇,其中同学们作为第一作者发表国际高水平论文成果9项,相关同学得到保研升学的机会,获得包括北京大学在内的海内外知名高校的录取。

    小组的前辈同学们具有机器学习、深度学习、图像分析、文本分析、多模态融合等技术的掌握,小组支持鼓励成员间相互协助,共同进步,“以老带新”将经验传递,将技术传授,更将精神传承!

    第7期即将在寒假开展科研活动,小组目前聚焦于“社交媒体:重塑企业管理、金融经济与社会发展的新力量”,只要你坚持不懈、诚实可靠、认真努力、乐于科研,欢迎准备好简历和研究计划发邮件到liufeng@sdu.edu.cn申请加入!

    Star-lights Research Team: Pursuing Scientific Excellence, Shining Bright at Shandong University!

    The Star-lights Research Team has successfully operated 6 sessions, guiding Shandong University undergraduates in publishing over 10 SSCI/SCI papers. Among these, nine high-level international papers were published with the students as first authors. These accomplishments have opened doors for further academic opportunities, with students receiving offers from renowned domestic and international universities.

    The senior members of the team are proficient in technologies such as machine learning, deep learning, image analysis, text analysis, and multimodal fusion. The team fosters a collaborative environment, encouraging mutual support and collective progress. With a culture of “learning from the seniors", experience is passed down, technical skills are taught, and, most importantly, the team’s spirit is inherited!

    broken image
  • Publication achievements 期刊成就

    broken image

    FT50

    • Journal of Business Ethics

    ABS3

    • International Journal of Production Economics (Twice)
    • Technological Forecasting and Social Change (Three times)
    • Annals of Operations Research
    • Decision Support Systems
    • Journal of Purchasing and Supply Management
  • 1. Operations and Supply Chain Management

    (运营管理与供应链管理)

    本系列研究成果主要致力于:1. 扩宽供应链集中度的内涵,在客户集中度和供应商集中度的基础上引出地区集中度与产品集中度的概念;2. 探索HACCP运营管理体系的经济价值;3. 数字化转型与供应链运营管理的交叉融合。

    1. Liu, F., Chen, Z., Fang, M., Xiao, S. *, & Shi, Y. (2024). Legitimacy and Transparency in Dyadic Supply Chains: Does Competition Intensity Matter?. International Journal of Production Economics, 109397. https://doi.org/10.1016/j.ijpe.2024.109397
    2. Liu, F., Liu, C., Wang, X., Park, K., & Fang, M. * (2024). Keep concentrated and carry on: redesigning supply chain concentration in the face of COVID-19. International Journal of Logistics Research and Applications, 27(10), 1681–1704. https://doi.org/10.1080/13675567.2023.2175803
    3. Liu, F., Fang, M., Xiao, S.(S). *, & Shi, Y. (2024) Mitigating bullwhip effect in supply chains by engaging in digital transformation: the moderating role of customer concentration. Annals of Operations Research. https://doi.org/10.1007/s10479-024-05908-
    4. Liu, F., Yu, Y., Fang, Y., Zhu, M., Shi, Y., & Xiao, S. S. (2024). Lean strategy in SMEs: Inventory leanness, operational leanness, and financial performance. The Asian Journal of Shipping and Logistics, 40(2), 109-117. https://doi.org/10.1016/j.ajsl.2024.02.003
    5. Liu, F., Wang, Q., Zhang, Z., Fang, M. and Xiao, S.(S). *(2023). Lean inventory, fintech and financing: interactive influences on Chinese SMEs, Management Decision, 61(8), 2302-2321. https://doi.org/10.1108/MD-06-2022-0878 (星耀科研小组成果)
    6. Liu, F., Kim, B. C. *, & Park, K. (2022). Supplier-base concentration as a moderating variable in the non-linear relationship between R&D and firm value. Asian Journal of Technology Innovation, 30(2), 342-363. https://doi.org/10.1080/19761597.2020.1853576
    7. Liu, F., Rhim, H., Park, K., Xu, J., & Lo, C. K. * (2021). HACCP certification in food industry: Trade-offs in product safety and firm performance. International Journal of Production Economics, 231,107838. https://doi.org/10.1016/j.ijpe.2020.107838
    8. Liu, F., & Park, K. * (2021). Managing firm risk through supply chain dependence: an SME perspective, Journal of Business & Industrial Marketing, 36(12), 2231–2242. https://doi.org/10.1108/JBIM-05-2019-0229
    9. Liu, F., Fang, M., Park, K., & Chen, X. * (2021) Supply chain finance, performance, and risk: How do SMEs adjust their buyer-supplier relationship for competitiveness?. Journal of Competitiveness, 13(4), 78–95. https://doi.org/10.7441/joc.2021.04.05
    10. Chen, X., Liu, C., Liu, F. *, & Fang, M. (2021). Firm Sustainable Growth during the COVID-19 Pandemic: The Role of Customer Concentration. Emerging Markets Finance and Trade, 57(6), 1566-1577. https://doi.org/10.1080/1540496X.2021.190488
    11. Fang, M., Liu, F., Xiao, S., & Park, K.* (2023). Hedging the bet on digital transformation in strategic supply chain management: a theoretical integration and an empirical test. International Journal of Physical Distribution & Logistics Management. 53(4), 512-531.. https://doi.org/10.1108/IJPDLM-12-2021-0545
    12. Fang, M., Liu, F., & Park, K. * (2022). Is inventory performance helping to improve SME credit ratings? The moderating role of supply chain concentration. Applied Economics Letters, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1080/13504851.2022.215645
    13. Fang, M., Yu, Y., Park, K., Liu, F., Xiao, S. S., & Shi, Y. (2024). Supply chain relationship dependencies and circular economy performance: The contingency role of digitalization capability. Journal of Purchasing and Supply Management, 100902. https://doi.org/10.1016/j.pursup.2024.100902

    2. Machine Learning and Deep Learning Applications (机器学习深度学习与经济管理的交叉融合)

    本系列研究成果主要是丰富机器学习、深度学习的研究范式,探索机器学习与深度学习研究方法在经济管理中的应用,指导本科生(星耀科研小组)在SCI/SSCI发表论文多篇

    1. Liu, F., Wang, R. & Fang, M. *. (2024) Mapping green innovation with machine learning: Evidence from China, Technological Forecasting and Social Change, 200, 123107. https://doi.org/10.1016/j.techfore.2023.123107 (星耀科研小组成果)
    2. Liu, F., Huang, W., Zhang, J., & Fang, M. * . (2024). Corporate social responsibility in family business: Using machine learning to uncover who is doing good. Technology in Society, 102453. https://doi.org/10.1016/j.techsoc.2024.102453 (星耀科研小组成果)
    3. Liu, F., Long, X., Zhang, Z., Lin, Dong., and Fang, M. *(2023). What makes you entrepreneurial? Using machine learning to investigate the determinants of entrepreneurship in China, China Economic Review, 81, 102029. https://doi.org/10.1016/j.chieco.2023.102029 (星耀科研小组成果)
    4. Sun, R, Liu, F. * , Li, Y., Wang, R. & Luo, J (2024) Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter? Forthcoming, Journal of Business Ethics (FT50)https://doi.org/10.1007/s10551-024-05685-0 (星耀科研小组成果)
    5. Wang, H., Chen, Z. S., Fang, M., Wang, Y., & Liu, F. * (2025). Panoramic sales insight: Using multimodal fusion to improve the effectiveness of flash sales. Decision Support Systems, 114401. https://doi.org/10.1016/j.dss.2025.114401
    6. Xu, Q., Liu, C., Luo, J., & Liu, F. (2024). Using machine learning to investigate the determinants of loan default in P2P lending: Are there differences between before and during COVID-19?. Pacific-Basin Finance Journal, 102550. https://doi.org/10.1016/j.pacfin.2024.102550 (星耀科研小组成果)
    7. Sun, C., & Liu, F.* (2024). VSEM-SAMMI: An Explainable Multimodal Learning Approach to Predict User-Generated Image Helpfulness and Product Sales. International Journal of Computational Intelligence Systems, 17(1), 97. https://doi.org/10.1007/s44196-024-00495-8 (星耀科研小组成果)
    8. Gu, J., Zhang, S., Yu, Y., & Liu, F. * (2024). AB-LSTM-GRU: A Novel Ensemble Composite Deep Neural Network Model for Exchange Rate Forecasting. Computational Economics . https://doi.org/10.1007/s10614-024-10754-7 (星耀科研小组成果)
    9. Liu, C., Chen, X., Wang, Y., Xiao, S., Liu, C., & Liu, F. * (2024). Exploring the determinants of systematic risk through machine learning: evidence from Chinese listed companies. Applied Economics. https://doi.org/10.1080/00036846.2024.2431170 (星耀科研小组成果)
    10. Zhang, J., Zhu, M. & Liu, F. *. (2024) Find who is doing social good: using machine learning to predict corporate social responsibility performance. Operations Management Research. https://doi.org/10.1007/s12063-023-00427-3 (星耀科研小组成果)
    11. Liu, W., Liu, C., Luo, J., & Liu, F.* (2024). How does digital transformation promote total factor productivity? Strategy, technology, and application. Managerial and Decision Economics, 1–12. https://doi.org/10.1002/mde.4155 (星耀科研小组成果)
    12. Zhang, S., Luo, J., Wang, S., & Liu, F. *. (2023). Oil price forecasting: A hybrid GRU neural network based on decomposition–reconstruction methods. Expert Systems with Applications, 218, 119617. https://doi.org/10.1016/j.eswa.2023.119617 (星耀科研小组成果)
    13. Wang, M., Yu, Y., & Liu, F. * . (2023). Does Digital Transformation Curb the Formation of Zombie Firms? A Machine Learning Approach. Technology Analysis & Strategic Management, https://doi.org/10.1080/09537325.2023.2296007 (星耀科研小组成果)
    14. Liu, C., Li, Y., Fang, M., & Liu, F. * . (2023). Using machine learning to explore the determinants of service satisfaction with online healthcare platforms during the COVID-19 pandemic. Service Business, 17, 449–476. https://doi.org/10.1007/s11628-023-00535-x(星耀科研小组成果)
    15. Liu, C., Chen, Y., Huang, S., Chen, X., & Liu, F. * (2023). Assessing the Determinants of Corporate Risk-Taking Using Machine Learning Algorithms. Systems, 11(5), 263. https://doi.org/10.3390/systems11050263 (星耀科研小组成果)

    3. Technology, Innovation, Entrepreneurship, and SMEs (技术、创新、创业以及中小企业)

    本系列研究主要是探索中小企业的高质量发展以及技术、创新、创业等多个领域的热点话题。

    1. Liu, F., Dutta, D. K. *, & Park, K. (2020). From external knowledge to competitive advantage: absorptive capacity, firm performance, and the mediating role of labour productivity. Technology Analysis & Strategic Management, 33(1), 18-30. https://doi.org/10.1080/09537325.2020.1787373
    2. Liu, F. *, Shang, M., & Zhou, X. (2021). Toward street vending in post COVID-19 China: Social networking services information overload and switching intention. Technology in Society, 66, 101669. https://doi.org/10.1016/j.techsoc.2021.101669
    3. Xu, J., & Liu, F. *, & Shang, Y. (2020). R&D investment, ESG performance and green innovation performance: evidence from China, Kybernetes, 50(3), 737-756. https://doi.org/10.1108/K-12-2019-0793
    4. Wang, X., Wong, Y. D., Liu, F., & Yuen, K. F. (2023). Consumers' paradoxical motives of co-creation: From self-service technology to crowd-sourcing platform. Technological Forecasting and Social Change, 197, 122934. https://doi.org/10.1016/j.techfore.2023.122934
    5. Wang, X., Wong, Y. D., Liu, F., & Yuen, K. F. * (2021). A push–pull–mooring view on technology-dependent shopping under social distancing: When technology needs meet health concerns. Technological Forecasting and Social Change, 173, 121109. https://doi.org/10.1016/j.techfore.2021.121109
    6. Yu, W., Dai, S. *, Liu, F., & Yang, Y. (2022). Matching disruptive innovation paths with entrepreneurial networks: a new perspective on startups’ growth with Chinese evidence. Asian Business & Management, 22, 878–902. https://doi.org/10.1057/s41291-022-00177-3
    7. 余维臻,陈立峰 & 刘锋. (2020). 后发情境下创业企业如何成为“独角兽”——颠覆性创新视角的探索性案例研究. 科学学研究, https://doi.org/10.16192/j.cnki.1003-2053.20200924.006
  • Star-lights Research Team

    星耀科研小组

    面向本科生的星耀科研小组已经成功运营了6期,指导山东大学的本科生发表SSCI/SCI论文10余篇,其中同学们作为第一作者发表国际高水平论文成果9项(请参考下方图片),相关同学得到保研升学的机会,获得包括北京大学在内的海内外知名高校的录取。

    小组的前辈同学们具有机器学习、深度学习、图像分析、文本分析、多模态融合等技术的掌握,小组支持鼓励成员间相互协助,共同进步,“以老带新”将经验传递,将技术传授,更将精神传承!

    第7期即将在寒假开展科研活动,小组目前聚焦于“社交媒体:重塑企业管理、金融经济与社会发展的新力量”,只要你坚持不懈、诚实可靠、认真努力、乐于科研,欢迎准备好简历和研究计划发邮件到liufeng@sdu.edu.cn申请加入!

    唯有步履不停,才能迈向更为辽阔的天地,勇攀学术高峰。

    锐意进取,方能成果丰硕!

    精诚合作不断攻克难关,做科研路上的追光者。

    希望各小组成员向山而行,勇攀高峰,取得更多更高质量的研究成果!

  • 感谢所有的合作者、所有的学生们!

    Research is a lot like love, and the commitment to be a researcher is a lot like saying “I do”.

    broken image